Abstract:To improve the reliability and interpretability of industrial process monitoring, this article proposes a Causal Graph Spatial-Temporal Autoencoder (CGSTAE). The network architecture of CGSTAE combines two components: a correlation graph structure learning module based on spatial self-attention mechanism (SSAM) and a spatial-temporal encoder-decoder module utilizing graph convolutional long-short term memory (GCLSTM). The SSAM learns correlation graphs by capturing dynamic relationships between variables, while a novel three-step causal graph structure learning algorithm is introduced to derive a causal graph from these correlation graphs. The algorithm leverages a reverse perspective of causal invariance principle to uncover the invariant causal graph from varying correlations. The spatial-temporal encoder-decoder, built with GCLSTM units, reconstructs time-series process data within a sequence-to-sequence framework. The proposed CGSTAE enables effective process monitoring and fault detection through two statistics in the feature space and residual space. Finally, we validate the effectiveness of CGSTAE in process monitoring through the Tennessee Eastman process and a real-world air separation process.
Abstract:Vision Language Models (VLMs) typically assume complete modality input during inference. However, their effectiveness drops sharply when certain modalities are unavailable or incomplete. Current research primarily faces two dilemmas: Prompt-based methods struggle to restore missing yet indispensable features and impair generalization of VLMs. Imputation-based approaches, lacking effective guidance, are prone to generating semantically irrelevant noise. Restoring precise semantics while sustaining VLM generalization remains challenging. Therefore, we propose a general missing modality restoration strategy in this paper. We introduce an enhanced diffusion model as a pluggable mid-stage training module to effectively restore missing features. Our strategy introduces two key innovations: (I) Dynamic Modality Gating, which adaptively leverages conditional features to steer the generation of semantically consistent features; (II) Cross-Modal Mutual Learning mechanism, which bridges the semantic spaces of dual encoders to achieve bidirectional alignment. Zero-shot evaluations across benchmark datasets demonstrate that our approach outperforms existing baseline methods. Extensive experiments and ablation studies confirm our model as a robust and scalable extension for VLMs in missing modality scenarios, ensuring reliability across diverse missing rates and environments. Our code and models will be publicly available.
Abstract:Large Language Models (LLMs) remain vulnerable to adaptive jailbreaks that easily bypass empirical defenses like GCG. We propose a framework for certifiable robustness that shifts safety guarantees from single-pass inference to the statistical stability of an ensemble. We introduce Certified Semantic Smoothing (CSS) via Stratified Randomized Ablation, a technique that partitions inputs into immutable structural prompts and mutable payloads to derive rigorous lo norm guarantees using the Hypergeometric distribution. To resolve performance degradation on sparse contexts, we employ Noise-Augmented Alignment Tuning (NAAT), which transforms the base model into a semantic denoiser. Extensive experiments on Llama-3 show that our method reduces the Attack Success Rate of gradient-based attacks from 84.2% to 1.2% while maintaining 94.1% benign utility, significantly outperforming character-level baselines which degrade utility to 74.3%. This framework provides a deterministic certificate of safety, ensuring that a model remains robust against all adversarial variants within a provable radius.
Abstract:The automated extraction of structured questions from paper-based mathematics exams is fundamental to intelligent education, yet remains challenging in real-world settings due to severe visual noise. Existing benchmarks mainly focus on clean documents or generic layout analysis, overlooking both the structural integrity of mathematical problems and the ability of models to actively reject incomplete inputs. We introduce MathDoc, the first benchmark for document-level information extraction from authentic high school mathematics exam papers. MathDoc contains \textbf{3,609} carefully curated questions with real-world artifacts and explicitly includes unrecognizable samples to evaluate active refusal behavior. We propose a multi-dimensional evaluation framework covering stem accuracy, visual similarity, and refusal capability. Experiments on SOTA MLLMs, including Qwen3-VL and Gemini-2.5-Pro, show that although end-to-end models achieve strong extraction performance, they consistently fail to refuse illegible inputs, instead producing confident but invalid outputs. These results highlight a critical gap in current MLLMs and establish MathDoc as a benchmark for assessing model reliability under degraded document conditions. Our project repository is available at \href{https://github.com/winnk123/papers/tree/master}{GitHub repository}
Abstract:Accurate and rapid state-of-health (SOH) monitoring plays an important role in indicating energy information for lithium-ion battery-powered portable mobile devices. To confront their variable working conditions, transfer learning (TL) emerges as a promising technique for leveraging knowledge from data-rich source working conditions, significantly reducing the training data required for SOH monitoring from target working conditions. However, traditional TL-based SOH monitoring is infeasible when applied in portable mobile devices since substantial computational resources are consumed during the TL stage and unexpectedly reduce the working endurance. To address these challenges, this paper proposes a lightweight TL-based SOH monitoring approach with constructive incremental transfer learning (CITL). First, taking advantage of the unlabeled data in the target domain, a semi-supervised TL mechanism is proposed to minimize the monitoring residual in a constructive way, through iteratively adding network nodes in the CITL. Second, the cross-domain learning ability of node parameters for CITL is comprehensively guaranteed through structural risk minimization, transfer mismatching minimization, and manifold consistency maximization. Moreover, the convergence analysis of the CITL is given, theoretically guaranteeing the efficacy of TL performance and network compactness. Finally, the proposed approach is verified through extensive experiments with a realistic autonomous air vehicles (AAV) battery dataset collected from dozens of flight missions. Specifically, the CITL outperforms SS-TCA, MMD-LSTM-DA, DDAN, BO-CNN-TL, and AS$^3$LSTM, in SOH estimation by 83.73%, 61.15%, 28.24%, 87.70%, and 57.34%, respectively, as evaluated using the index root mean square error.
Abstract:Particle filtering for target tracking using multi-input multi-output (MIMO) pulse-Doppler radars faces three long-standing obstacles: a) the absence of reliable likelihood models for raw radar data; b) the computational and statistical complications that arise when nuisance parameters (e.g., complex path gains) are augmented into state vectors; and c) the prohibitive computational burden of extracting noisy measurements of range, Doppler, and angles from snapshots. Motivated by an optimization-centric interpretation of Bayes' rule, this article addresses these challenges by proposing a new particle filtering framework that evaluates each hypothesized state using a tailored cost function, rather than relying on an explicit likelihood relation. The framework yields substantial reductions in both running time and tracking error compared to existing schemes. In addition, we examine the implementation of the proposed particle filter in MIMO orthogonal frequency-division multiplexing (OFDM) systems, aiming to equip modern communication infrastructure with integrated sensing and communications (ISAC) capabilities. Experiments suggest that MIMO-OFDM with pulse-Doppler processing holds considerable promise for ISAC, particularly when wide bandwidth, extended on-target time, and large antenna aperture are utilized.
Abstract:Accurate magnetic resonance imaging (MRI) segmentation is crucial for clinical decision-making, but remains labor-intensive when performed manually. Convolutional neural network (CNN)-based methods can be accurate and efficient, but often generalize poorly to MRI's variable contrast, intensity inhomogeneity, and protocols. Although the transformer-based Segment Anything Model (SAM) has demonstrated remarkable generalizability in natural images, existing adaptations often treat MRI as another imaging modality, overlooking these modality-specific challenges. We present SAMRI, an MRI-specialized SAM trained and validated on 1.1 million labeled MR slices spanning whole-body organs and pathologies. We demonstrate that SAM can be effectively adapted to MRI by simply fine-tuning its mask decoder using a two-stage strategy, reducing training time by 94% and trainable parameters by 96% versus full-model retraining. Across diverse MRI segmentation tasks, SAMRI achieves a mean Dice of 0.87, delivering state-of-the-art accuracy across anatomical regions and robust generalization on unseen structures, particularly small and clinically important structures.
Abstract:Using intelligent systems to perceive psychological and social behaviors, that is, the underlying affective, cognitive, and pathological states that are manifested through observable behaviors and social interactions, remains a challenge due to their complex, multifaceted, and personalized nature. Existing work tackling these dimensions through specialized datasets and single-task systems often miss opportunities for scalability, cross-task transfer, and broader generalization. To address this gap, we curate Human Behavior Atlas, a unified benchmark of diverse behavioral tasks designed to support the development of unified models for understanding psychological and social behaviors. Human Behavior Atlas comprises over 100,000 samples spanning text, audio, and visual modalities, covering tasks on affective states, cognitive states, pathologies, and social processes. Our unification efforts can reduce redundancy and cost, enable training to scale efficiently across tasks, and enhance generalization of behavioral features across domains. On Human Behavior Atlas, we train three models: OmniSapiens-7B SFT, OmniSapiens-7B BAM, and OmniSapiens-7B RL. We show that training on Human Behavior Atlas enables models to consistently outperform existing multimodal LLMs across diverse behavioral tasks. Pretraining on Human Behavior Atlas also improves transfer to novel behavioral datasets; with the targeted use of behavioral descriptors yielding meaningful performance gains.



Abstract:This work studies a composite minimization problem involving a differentiable function q and a nonsmooth function h, both of which may be nonconvex. This problem is ubiquitous in signal processing and machine learning yet remains challenging to solve efficiently, particularly when large-scale instances, poor conditioning, and nonconvexity coincide. To address these challenges, we propose a proximal conjugate gradient method (PCG) that matches the fast convergence of proximal (quasi-)Newton algorithms while reducing computation and memory complexity, and is especially effective for spectrally clustered Hessians. Our key innovation is to form, at each iteration, an approximation to the Newton direction based on CG iterations to build a majorization surrogate. We define this surrogate in a curvature-aware manner and equip it with a CG-derived isotropic weight, guaranteeing majorization of a local second-order model of q along the given direction. To better preserve majorization after the proximal step and enable further approximation refinement, we scale the CG direction by the ratio between the Cauchy step length and a step size derived from the largest Ritz value of the CG tridiagonal. All curvature is accessed via Hessian-vector products computed by automatic differentiation, keeping the method Hessian-free. Convergence to first-order critical points is established. Numerical experiments on CS-MRI with nonconvex regularization and on dictionary learning, against benchmark methods, demonstrate the efficiency of the proposed approach.
Abstract:Existing GUI grounding methods often struggle with fine-grained localization in high-resolution screenshots. To address this, we propose GUI-ARP, a novel framework that enables adaptive multi-stage inference. Equipped with the proposed Adaptive Region Perception (ARP) and Adaptive Stage Controlling (ASC), GUI-ARP dynamically exploits visual attention for cropping task-relevant regions and adapts its inference strategy, performing a single-stage inference for simple cases and a multi-stage analysis for more complex scenarios. This is achieved through a two-phase training pipeline that integrates supervised fine-tuning with reinforcement fine-tuning based on Group Relative Policy Optimization (GRPO). Extensive experiments demonstrate that the proposed GUI-ARP achieves state-of-the-art performance on challenging GUI grounding benchmarks, with a 7B model reaching 60.8% accuracy on ScreenSpot-Pro and 30.9% on UI-Vision benchmark. Notably, GUI-ARP-7B demonstrates strong competitiveness against open-source 72B models (UI-TARS-72B at 38.1%) and proprietary models.